Asymptotic Statistics of Cycles in Surrogate-spatial Permutations
نویسنده
چکیده
We propose an extension of the Ewens measure on permutations by choosing the cycle weights to be asymptotically proportional to the degree of the symmetric group. This model is primarily motivated by a natural approximation to the so-called spatial random permutations recently studied by V. Betz and D. Ueltschi (hence the name “surrogatespatial”), but it is of substantial interest in its own right. We show that under the suitable (thermodynamic) limit both measures have the similar critical behaviour of the cycle statistics characterized by the emergence of infinitely long cycles. Moreover, using a greater analytic tractability of the surrogate-spatial model, we obtain a number of new results about the asymptotic distribution of the cycle lengths (both small and large) in the full range of subcritical, critical and supercritical domains. In particular, in the supercritical regime there is a parametric “phase transition” from the Poisson–Dirichlet limiting distribution of ordered cycles to the occurrence of a single giant cycle. Our techniques are based on the asymptotic analysis of the corresponding generating functions using Pólya’s Enumeration Theorem and complex variable methods.
منابع مشابه
TESTING FOR “RANDOMNESS” IN SPATIAL POINT PATTERNS, USING TEST STATISTICS BASED ON ONE-DIMENSIONAL INTER-EVENT DISTANCES
To test for “randomness” in spatial point patterns, we propose two test statistics that are obtained by “reducing” two-dimensional point patterns to the one-dimensional one. Also the exact and asymptotic distribution of these statistics are drawn.
متن کاملProfiles of Permutations
This paper develops an analogy between the cycle structure of, on the one hand, random permutations with cycle lengths restricted to lie in an infinite set S with asymptotic density σ and, on the other hand, permutations selected according to the Ewens distribution with parameter σ. In particular we show that the asymptotic expected number of cycles of random permutations of [n] with all cycles...
متن کاملDetecting temporal and spatial correlations in pseudoperiodic time series.
Recently there has been much attention devoted to exploring the complicated possibly chaotic dynamics in pseudoperiodic time series. Two methods [Zhang, Phys. Rev. E 73, 016216 (2006); Zhang and Small, Phys. Rev. Lett. 96, 238701 (2006)] have been forwarded to reveal the chaotic temporal and spatial correlations, respectively, among the cycles in the time series. Both these methods treat the cy...
متن کاملAsymptotic behavior of some statistics in Ewens random permutations
The purpose of this article is to present a general method to find limiting laws for some renormalized statistics on random permutations. The model considered here is Ewens sampling model, which generalizes uniform random permutations. We describe the asymptotic behavior of a large family of statistics, including the number of occurrences of any given dashed pattern. Our approach is based on th...
متن کاملSpatial Random Permutations and Infinite Cycles
We consider systems of spatial random permutations, where permutations are weighed according to the point locations. Infinite cycles are present at high densities. The critical density is given by an exact expression. We discuss the relation between the model of spatial permutations and the ideal and interacting quantum Bose gas.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013